8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Купить статью

Авторы: Пучков А. Ю., Дли М. И., Прокимнов Н. Н., Соколов  А. М.     Опубликовано в № 1(103) 10 января 2023 года
Рубрика: Модели и методики

Интеллектуальная модель управления рисками нарушения характеристик электромеханических устройств в многостадийной системе переработки рудного сырья

Представлены результаты исследований по разработке структуры интеллектуальной модели управления рисками нарушения характеристик электромеханических устройств в многостадийной системе переработки рудного сырья. Такие устройства задействованы на всех циклах технологического процесса, поэтому оценка указанного риска для них является актуальной задачей. Предложен метод оценки рисков, в основе которых лежит оценка времени полезного использования оборудования, выполняемого на основе прогноза характеристик глубокой рекуррентной нейронной сетью с дальнейшим обобщением получаемых результатов оценки в блоке нечеткого вывода. Применялись рекуррентные нейронные сети с долгой краткосрочной памятью, являющиеся одним из самых мощных аппаратов решения задач регрессии временных рядов, в том числе прогнозирования их значений на длительные интервалы. Применение глубоких нейронных сетей для прогноза характеристик электромеханических устройств позволило получить высокую точность прогноза, что, в свою очередь, позволило применить относительно менее точный рекуррентный метод наименьших квадратов для итерационного процесса оценки времени полезного использования оборудования. Такой подход дал возможность построить вычислительный процесс оценки с постоянным ее уточнением по мере поступления новых результатов измерений характеристик электромеханических устройств. Представлены результаты модельного эксперимента с программной реализацией предложенного метода, выполненной в среде MatLab 2021a, которые показали согласованность работы программных модулей и получение результата оценки риска, согласующегося с предполагаемой динамикой его изменения.

Ключевые слова

оценка риска, методы искусственного интеллекта, переработка мелкодисперсного рудного сырья

Автор статьи:

Пучков А. Ю.

Ученая степень:

канд. техн. наук, доцент, кафедра информационных технологий в экономике и управлении, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

г. Смоленск, Россия

Автор статьи:

Дли М. И.

Ученая степень:

докт. техн. наук, профессор, кафедра информационных технологий в экономике и управлении, филиал Национального исследовательского университета «МЭИ» в г. Смоленске, Смоленск; ведущий научный сотрудник, Университет «Синергия»

Местоположение:

г. Смоленск, Россия

Автор статьи:

Прокимнов Н. Н.

Ученая степень:

канд. техн. наук, доцент Московского финансово-промышленного университета «Синергия»

Местоположение:

Москва

Автор статьи:

Соколов  А. М.

Ученая степень:

ведущий инженер, научно-исследовательский отдел, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

Смоленск, Россия