8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Купить статью

Авторы: Пучков А. Ю., Дли М. И., Прокимнов Н. Н., Шутова  Д. Ю.     Опубликовано в № 6(102) 30 ноября 2022 года
Рубрика: Эффективные алгоритмы

Многоуровневые алгоритмы оценки и принятия решений по оптимальному управлению комплексной системой переработки мелкодисперсного рудного сырья

Представлены результаты исследований, целью которых была разработка многоуровневых алгоритмов принятия решений по управлению энергетической и ресурсной эффективностью, техногенной и экологической безопасностью комплексной многостадийной системы переработки мелкодисперсного рудного сырья (МСПМРС). Отличительной особенностью такой системы является ее многомерность и многомасштабность, проявляющаяся в наличии двух вариантов реализации технологических процессов переработки мелкодисперсного рудного сырья (МРС), необходимости учета взаимодействия входящих в систему агрегатов, а также иерархии описания процессов, протекающих в них, – механических, теплофизических, гидродинамических, физико-химических. Такое разнообразие процессов характеризует междисциплинарность исследований и сложность получения аналитических, взаимоувязанных математических моделей. Эта ситуация инспирировала применение для описания и анализа процессов методы искусственного интеллекта, такие как глубокое машинное обучение и нечеткая логика. Научная составляющая результатов исследования заключается в разработанной обобщенной структуре МСПМРС, концептуальной основе многоуровневых алгоритмов оценки и принятия решений по оптимальному управлению этой системой, предложенном составе параметров и форме критерия оптимизации. Задача исследования состояла в проведении анализа возможных вариантов переработки рудного сырья, выработке концепции построения МСПМРС, допускающей возможность оптимизации ее функционирования по критерию энергоресурсоэффективности при обеспечении требований экологической безопасности. Анонсировано применение эволюционных алгоритмов для решения задачи оптимизации МСПМРС по критерию минимума энергоресурсопотребления и конкретизированы ее этапы. Представлена структура блока нейронечеткого анализа информации о параметрах процессов в МСПМРС, в основе которого лежит использование глубоких рекуррентных и сверточных нейронных сетей, а также системы нечеткого логического вывода. Приведены результаты имитационного эксперимента по апробации программной реализации данного блока в среде MatLab.

Ключевые слова

системы принятия решений, переработка мелкодисперсного рудного сырья, методы искусственного интеллекта

Автор статьи:

Пучков А. Ю.

Ученая степень:

канд. техн. наук, доцент, кафедра информационных технологий в экономике и управлении, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

г. Смоленск, Россия

Автор статьи:

Дли М. И.

Ученая степень:

докт. техн. наук, профессор, кафедра информационных технологий в экономике и управлении, филиал Национального исследовательского университета «МЭИ» в г. Смоленске, Смоленск; ведущий научный сотрудник, Университет «Синергия»

Местоположение:

г. Смоленск, Россия

Автор статьи:

Прокимнов Н. Н.

Ученая степень:

канд. техн. наук, доцент Московского финансово-промышленного университета «Синергия»

Местоположение:

Москва

Автор статьи:

Шутова  Д. Ю.

Ученая степень:

канд. экон. наук, доцент, кафедра информационных технологий в экономике и управлении, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

Смоленск, Россия