Статьи автора
|
Представлены результаты исследований, целью которых была разработка многоуровневых алгоритмов принятия решений по управлению энергетической и ресурсной эффективностью, техногенной и экологической безопасностью комплексной многостадийной системы переработки мелкодисперсного рудного сырья (МСПМРС). Отличительной особенностью такой системы является ее многомерность и многомасштабность, проявляющаяся в наличии двух вариантов реализации технологических процессов переработки мелкодисперсного рудного сырья (МРС), необходимости учета взаимодействия входящих в систему агрегатов, а также иерархии описания процессов, протекающих в них, – механических, теплофизических, гидродинамических, физико-химических. Такое разнообразие процессов характеризует междисциплинарность исследований и сложность получения аналитических, взаимоувязанных математических моделей. Эта ситуация инспирировала применение для описания и анализа процессов методы искусственного интеллекта, такие как глубокое машинное обучение и нечеткая логика. Научная составляющая результатов исследования заключается в разработанной обобщенной структуре МСПМРС, концептуальной основе многоуровневых алгоритмов оценки и принятия решений по оптимальному управлению этой системой, предложенном составе параметров и форме критерия оптимизации. Задача исследования состояла в проведении анализа возможных вариантов переработки рудного сырья, выработке концепции построения МСПМРС, допускающей возможность оптимизации ее функционирования по критерию энергоресурсоэффективности при обеспечении требований экологической безопасности. Анонсировано применение эволюционных алгоритмов для решения задачи оптимизации МСПМРС по критерию минимума энергоресурсопотребления и конкретизированы ее этапы. Представлена структура блока нейронечеткого анализа информации о параметрах процессов в МСПМРС, в основе которого лежит использование глубоких рекуррентных и сверточных нейронных сетей, а также системы нечеткого логического вывода. Приведены результаты имитационного эксперимента по апробации программной реализации данного блока в среде MatLab.
Читать дальше...
Исследование посвящено совершенствованию системы управления сложной технологической системы переработки рудных отходов. Такие отходы в больших объемах скапливаются на прилегающих к горно-обогатительным комбинатам территориях, представляя большую экологическую угрозу как для населения, так и для окружающей среды за счет пылеобразования и проникновения вредных соединений в почву и грунтовые воды. Поэтому задача совершенствования систем управления переработкой рудных отходов, как одна из приоритетных, стоит на актуальной повестке дня менеджмента горно-обогатительных комбинатов. Комплексность технологической системы проявляется в наличии двух линий переработки, отличающихся набором агрегатов, а выбор линии зависит от гранулометрического состава рудных отходов. Научную новизну результатов исследования составляет предложенная структура нейросетевого регулятора на основе эталонной модели процесса управления, в котором применены глубокие рекуррентные нейронные сети в качестве цифровой копии объекта управления. В состав общей структуры нейрорегулятора входит несколько локальных нейроконтроллеров для каждого из агрегатов технологической системы. Рекуррентные нейронные сети позволяют создать высокоточные цифровые копии отдельных агрегатов двух технологических линий переработки и использовать их для имитации отклика объектов управления при настройке контроллеров. Апробирование предложенной структуры нейрорегулятора проводилось в среде MatLab-Simulik, нейронные сети проектировались с помощью инструмента Deep Network Designer. Результаты апробирования показали, что быстродействие системы управления повышается по сравнению с другими архитектурами нейрорегуляторов, доступными в среде Simulik, что может положительно сказаться на работе всей технологической системы в переходных режимах, в частности снизить технологические потери. Читать дальше...
|