+7 (495) 987 43 74 ext. 3304
Join us -              
Рус   |   Eng


“Journal of Applied Informatics” is a peer-reviewed science journal with international representation of editorial board and authors, covering a significant part of Russian IT-area. The topics of the publications are connected to the aspects of theory and application of computer modeling and information technologies in various professional areas. The journal is indexed by Russian Science Citation Index on Web of Science platform.

In accordance with the decision of the Higher Attestation Commission of the Ministry of Education and Science of Russian Federation, journal is included in the «List of Leading Peer-Reviewed Scientific Journals and Publications authorized to publish main dissertation results»

An approach to the design of a neural network for the formation of an individual trajectory of knowledge testing

The paper discusses the issues of implementing an adaptive testing system based on the use of artificial neural network (INS) modules, which should solve the problem of intelligent choice of the next question, forming an individual testing trajectory. The aim of the work is to increase the accuracy of the INS to form the level of complexity of the next test question for two types of architectures – direct propagation (FNN – Feedforward Neural Network) and recurrent with long-term short-term memory (LSTM – Long-Short Term Memory). The data affecting the quality of training are analyzed, the architectures of the input layer of the direct propagation INS are considered, which have significantly improved the quality of neural networks. To solve the problem of choosing the thematic block of the question, a hybrid module structure is proposed, including the INS itself and a software module for algorithmic processing of the results obtained from the INS. A study of the feasibility of using direct propagation ANNs in comparison with the LSTM architecture was carried out, the input parameters of the network were identified, various architectures and parameters of the ANN training were compared (algorithms for updating weights, loss functions, the number of training epochs, packet sizes). The substantiation of the choice of a direct distribution network in the structure of the hybrid module for selecting a thematic block is given. The above results were obtained using the Keras high-level library, which allows you to quickly start at the initial stages of research and get the first results. Traditionally, learning has taken place over a large number of eras.

Building the mathematical model of the decision support system in the field of pricing for e-commerce

This work is devoted to the study of pricing issues for obtaining maximum profit when selling consumer goods at a constant purchase price. The said goods come in from either manufacturers or warehouses where the retail companies buy the goods in order to sell them directly to the consumers. The dependence of the selling rate per unit of time on the level of the added price in relation to the purchase price of the item is established by the means of sales price variation. The object of the research is the specific case of a linear approximation of said dependence, which is usually actualized in the event of either more elastic or less elastic demand for goods, when they are sold through Internet platforms. The proposed approach to determining prices of all the goods which are being sold for maximizing the total profit from the sales of all consumer goods or maximizing the total revenue throughout the whole period of sales time, based on the search of extremum points of the profit and revenue functions for each item of goods remains valid in the case of more complex approximations by quadratic and cubic functions of demand function. The type of the function of maximum value added revenue and the type of the function of maximum profit can be both found per unit of time depending on the variable level of the added price included into the sales price of the item. The type of maximum revenue function can be found per unit of time depending on the sales price of the item. The extremum points of the found functions are being determined. The theorems have been proved, that the extremum points which are being determined appear to be the maximum points of the researched functions for each item of goods, when the maximum profit or the maximum revenues are reached by selling goods to consumers. All common variables of said functions are found by summing up these functions among the multitude of goods on the interval of the whole sales time. The received data is used for the practical implementation of an effective sales strategy that ensures maximum profits for companies specializing in direct sales to consumers of the purchased goods. An applied methodicalэф approach to the sales of goods which ensures maximum profit from the sales in the field of elastic demand approximated by a linear function and under the condition of a constant purchase price for goods is proposed and theoretically substantiated.

Comparison of mathematical models of the dynamics of electrically charged gas suspensions for various concentrations of the dispersed component

The author: Tukmakov D.
This work is devoted to mathematical modeling of the dynamics of inhomogeneous electrically charged media. A dusty environment - solid particles suspended in a gas – was considered as an inhomogeneous medium. The mathematical model implemented a continuous approach to modeling the dynamics of inhomogeneous media. The complete hydrodynamic system of equations was solved for each component. The system of equations for the dynamics of each component included the equations of mass continuity, momentum components, and the energy conservation equation for the mixture component. Intercomponent interaction took into account momentum exchange and intercomponent heat transfer. The carrier medium was described as a viscous compressible heat-conducting gas. The flow was described as a flow with a two- dimensional geometry. The equations of the mathematical model were supplemented with initial and boundary conditions. The mathematical model took into account the wall viscosity in the channel. The system of equations of the mathematical model was integrated by McCormack's explicit finite-difference method. To obtain a monotonic grid function, a nonlinear scheme for correcting the numerical solution was used. The mathematical model was supplemented by the Poisson equation describing the electric field formed by charged dispersed particles. Poisson's equation was integrated by finite-difference methods on a gas-dynamic grid. Such a choice of the computational grid was necessary to calculate the concentration of particles required both for solving the electric field equation and for calculating the physical fields of the dynamics of inhomogeneous media. The reciprocal motion of a gas suspension caused by the movement of dispersed particles under the action of the Coulomb force was numerically investigated. The values of the surface and mass densities are determined, at which the models of the surface and mass densities of charges in the simulation of such a process are the same. It is revealed that the surface and mass models of charges are identical with respect to the volumetric content.

Data mining in the management of the Russian higher school

For a comprehensive assessment of the management decisions quality, it is necessary to take into account heterogeneous information presented both in numerical form and in natural language expressions. The effective occurs the use of data mining including neural network clustering and fuzzy set theory. The article presents our approach to the use of these methods for evaluating risks and the management decisions quality in Russian higher education on the example of the implementation of the most ambitious Project 5-100 for it. On the example, the expediency of the neural network clustering to assess the possibility of achieving the goals of any such large-scale project has been proved. Clustering the information database used for the analysis, makes it possible to carry out an objective selection of candidate universities-candidates for the right to receive state subsidies, as well as to adjust the composition of the Project participants. Another methods of intellectual analysis – the construction of a complex of fuzzy inference systems, – confirmed the possibility of a quantitative fi evaluating of the project based on the expert verbal estimates of the project. At the same time, the neural network clustering initially illustrated the unattainability of the Project 5-100 goals. The use of a complex of fuzzy inference systems confirmed this statement by the very low quantitative final assessment of the project on the basis of verbal expert opinions.

Development of a secure neural traffic tunneling system with post-performance evaluation

Currently information exchange methods and means of communication development are being done a significant impact on the level of all industrial and economic entities innovation potential, which is also the same for their group formations, such as regional complexes. It is necessary to note high degree of integration and interdependence of all such systems elements and processes closely interconnected by different kind of networks. Among them, it is possible to highlight the interaction between participants of scientific and industrial cluster within the framework of innovative activities, which should provide possibility to transfer and receive various kinds of data, which could be both open and confidential type. At the current stage, there is not many applied tools for ensuring confidentiality in the implementation of these processes. For example, they partially solve the problem of traffic tunnelling systems based on OpenVPN or WireGuard tunnels, and other software solutions provide the potential of an extensible cloud (Nextcloud). However, analysing the functionality of these solutions, it is possible to identify shortcomings that do not allow their implementation in the complex production and economic systems processes of innovative development. Thus, existing traffic tunnelling solutions are not adapted for deployment on a corporate scale with a flexible organisational structure. In solutions based on Nextcloud, the complexity disadvantages of the server configuration and the cost of the primary software configuration are highlighted. To solve the above problems, in article has been proposed an intelligent traffic tunneling system, which is based on using additional means of primary automated OpenVPN connection initialization at neural module expense. A dynamic digital fingerprint distribution system with two-way key exchange was used as an authorization server. The developed software solution was tested and then compared with existing analogues. This experiment may to conclusion that the developed software solution is not inferior in a number of aspects to existing methods, and can subsequently be used to ensure secure information and communication exchange between industrial and economic entities in clusters during innovative processes implementation.

Intelligent soft package for modeling the planning process of multi‑assortment industrial production

The article discusses issues related to the development of a flexible intelligent software package for solving the problem of optimal planning of multi-assortment production. These industries are characterized by a large range of products, many types and configurations of equipment, with an increase in the dimension of the problem, the number of options for production schedules grows exponentially, therefore, it is extremely important to develop a specialized complex for effective optimal planning and scheduling, insisting on the characteristics of various multi-assortment industries. The purpose of this work is to increase the productivity of multi-assortment enterprises and reduce the time of production of products by developing methods and algorithms for optimizing scheduling in the form of a problem-oriented software package. The article presents a mathematical formulation of the optimization problem and a set of mathematical models and algorithms for the formation of objective functions for optimal scheduling of reconfigurable productions. Conducting this study is based on the use of methods of scheduling theory, optimization and evolutionary calculations, tools for object-oriented development of complex software systems and databases. The proposed software package has various intelligent user interfaces, supplemented by databases of products, equipment and technological regulations, a library of objective functions and mathematical optimization methods, an expert system tuning module, as well as an interactive system for visualizing the resulting production plans in the form of a Gantt chart and decision tree of the optimization problem. Testing of the software package was carried out on the data of polymer and metallurgical enterprises in Russia and Germany and confirmed the effectiveness of solving planning problems. Implementation of the proposed software package makes it possible to ensure efficient loading of enterprise equipment, reduce production costs and simplify the process of making managerial decisions in the course of production planning.

Method of structural synthesis of a technical vision system for the problem of area measurement

The author: Iskhakov A.
The article presents the results of a study of the problem of structural synthesis of a vision system and its parametric identification using a new method based on the mathematical apparatus of the theory of modified descriptive image algebras. The theory of modified descriptive image algebras is a mathematical apparatus that allows one to formally describe the processing and analysis of images. In this mathematical apparatus, it is possible to describe the mathematical model of the measurement function of the technical vision system for the selected attribute of the observed object. To develop mathematical models, procedural and parametric transformations of images are used. Any mathematical model in the theory of modified descriptive image algebras has at least one variational parameter. In the course of parametric identification, it is required to calculate their values. This problem is multimodal and always has at least one solution. Numerical methods are usually used to solve the optimization problem. The article describes the algorithm for constructing a mathematical model for measuring the area using procedural and parametric transformations. The parametric identification problem is solved in the form of a nonlinear optimization problem. The visualization of the objective function has been carried out and recommendations for choosing the values of its variational parameters have been formulated. The collection of statistical data was carried out and a histogram was constructed, on the basis of which the distribution law for the measured value is selected. The statistical task of testing the hypothesis with the selected law of distribution of the general population according to the Pearson criterion is solved for a given level of significance. For the unknown parameters of the chosen distribution law, the estimation of confidence intervals was carried out. The materials of the article are applied in nature and have practical value. Using the proposed approach, it is possible to develop a measurement function for any feature of the observed object on a series of images.

Methods of forming orthogonal polyhedra for cutting and packing objects of complex geometry

The article deals with the problem of packing objects of arbitrary geometry. Modern methods of designing irregular packing schemes use a mathematical model based on phi-functions and a hodograph vector function of dense placement. These methods make it possible to obtain exact solutions, but they are time-consuming and very sensitive to the dimension of the problem being solved and the degree of detail of the geometry of vector objects. The use of a discrete representation of placed objects in the form of orthogonal polyhedra can signifi increase the speed of construction a packing, which makes the problem of adequately transforming the shape of placed objects (vector models in the two-dimensional case and polygonal models in the three- dimensional case) relevant. The aim of the study is to systematize methods that provide the formation of orthogonal polyhedra of various dimensions for describing objects and containers of arbitrary geometry. Methods for creating orthogonal polyhedra based on set-theoretic operations (addition, subtraction and intersection), analytical modeling using a set of functions and relational operators, as well as voxelization of fl and volumetric object models are considered. The use of set-theoretic operations is best suited for the manual creation of orthogonal polyhedra with relatively simple geometry. The method of analytical modeling is intended for the formation of voxelized objects based on geometric fi es described by a set of analytically specifi functions. The application of various relational operators to obtain orthogonal polyhedra that describe the contour, internal and external regions of analytical given objects is shown. An algorithm for creating a container in the form of an orthogonal polyhedron based on a given vector model is proposed, which makes it possible to solve problems of irregular packing of objects inside containers of arbitrary shape. All the methods presented in the article are programmatically implemented with a generalization in terms of dimension and are applicable to solving any types of cutting and packing problems.