8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Купить статью

Авторы: Булыгина О. В., Воротилова М. Ю., Кулясов  Н. С., Ярцев  Д. Д.     Опубликовано в № 2(116) 25 апреля 2025 года
Рубрика: Управление эффективностью

Нечеткий биоинспирированный метод формирования набора кандидатов на линейные должности

Линейный персонал занимает подавляющую часть должностей во многих организациях, что обуславливает важность своевременного и успешного закрытия подобных вакансий. Поиск кандидатов на такие должности происходит в рамках массового подбора, который характеризуется высокой трудоемкостью, бюджетными и временными ограничениями, необходимостью регулярного повторения из-за высоких показателей кадровой текучести. Отмеченные особенности делают выполнение этого процесса невозможным без применения современных программных средств. Поскольку массовый подбор не требует нахождения наилучшего кандидата для каждой вакансии, а ограничивается поиском специалистов по формальным признакам на основе их резюме, то основная доля трудовых и временных затрат приходится на первичный отбор кандидатов. Существующие программные средства не обладают достаточным функционалом для эффективной автоматизации указанного процесса, так как в условиях необходимости обработки больших объемов многомерных данных они не обеспечивают комплексный учет разнотипных характеристик кандидата и автоматическое подстраивание критериев отбора с учетом их приоритетности для заполняемой вакансии. Для решения указанной проблемы был разработан автоматизированный метод формирования набора кандидатов на линейные должности, основанный на комплексном использовании адаптивной нейро-нечеткой системы и биоинспирированного алгоритма, вдохновленного поведением косяка плавающих рыб. Разработанный гибридный метод был реализован в виде программы для ­ЭВМ с использованием языка Python. Результаты его тестирования показали сходимость оптимизационного алгоритма, а сравнение с ручным подбором – перспективность использования для решения задач массового подбора линейного персонала.

Ключевые слова

массовый подбор персонала, условная многомерная оптимизация, биоинспирированные методы, Fish School Search, адаптивная нейро-нечеткая система, гибридизация

Автор статьи:

Булыгина О. В.

Ученая степень:

канд.экон.наук, доцент, кафедра Информационных технологий в экономике и управлении, Филиал Национального исследовательского университета «МЭИ» в г. Смоленске

Местоположение:

г. Смоленск

Автор статьи:

Воротилова М. Ю.

Ученая степень:

младший научный сотрудник, научно-исследовательское отделение, филиал Национального исследовательского университета «­МЭИ» в г. Смоленске

Местоположение:

Смоленск, Россия

Автор статьи:

Кулясов  Н. С.

Ученая степень:

канд. экон. наук, ведущий научный сотрудник, научно-методический центр «Высшая школа тарифного регулирования», Российский экономический университет им. Г. В. Плеханова

Местоположение:

г. Москва, Россия

Автор статьи:

Ярцев  Д. Д.

Ученая степень:

аспирант, Российский научно-исследовательский институт информации и технико-экономических исследований по инженерно-техническому обеспечению агропромышленного комплекса (Росинформагротех)

Местоположение:

Московская область, Россия