Данная статья является третьей в цикле работ, посвященных созданию нейросетевых систем анализа текстовой информации. Результаты использования предложенных ранее авторами статьи моделей для распознавания сложных символов японских азбук при решении практических задач (в том числе в рамках учебного процесса) показывали, что отсутствие эффективных и формализованных методик разработки интерфейсов информационных систем, реализующих нейросетевые технологии, приводит к необходимости дополнительного и достаточно длительного обучения пользователей. Это вызвано тем, что бурное развитие нейросетевых методов для распознавания текстовой информации не всегда сопровождается параллельной разработкой удобных интерфейсов пользователя. Основной причиной подобного развития событий является тот факт, что разработка пользовательского интерфейса требует совсем иного набора компетенций и навыков, нежели разработка нейросетевых методов и моделей. В статье предлагается подход к проектированию пользовательского интерфейса для прототипа настольного приложения, реализующего возможности предложенной авторами ранее нейронной сети для распознавания текстов на японском языке, записанных с использованием одной из двух японских азбук – катаканой или хираганой. При описании подхода к проектированию пользовательского интерфейса применялись нотации UML – для моделирования функциональных требований и BPMN – для моделирования логики работы приложения, взаимодействующего с нейронной сетью, модель которой была предложена авторами во второй статье. Определены принципы и инструментальная база проектирования интерфейса программного решения, спроектированы сценарии использования программы, приведены алгоритмы ее функционирования, описан прототип пользовательского интерфейса. Предложенный подход к построению пользовательских интерфейсов для приложений, использующих нейросетевые методы для решения задач, может быть использован в ходе изучения дисциплин, рассматривающих вопросы использования и проектирования информационных систем.
Ключевые слова
человеко-машинный интерфейс, сверточная нейронная сеть, предобработка данных, анализ текстов, машинное обучение