+7 (495) 987 43 74 ext. 3304
Join us -              
Рус   |   Eng

articles

Authors: Puchkov A., Fedotov V., Sokolov A. M.     Published in № 5(101) 21 october 2022 year
Rubric: Models and methods

Neural network analysis method of heat treatment processes of pelletized phosphate ore raw materials

Currently, there is an acute problem of waste disposal of mining and processing plants, which accumulate in significant volumes in the territories adjacent to them and pose a serious threat to the environment. In this regard, the creation of technological systems for processing ore waste and the improvement of their information support represent an urgent area of research. An example of such a system is a complex chemical and energy technology system for the production of yellow phosphorus from waste apatite-nepheline ores. The purpose of the study was to develop a model for collecting data on the parameters of the processes of heat treatment of pelletized phosphate ore raw materials in such a system, as well as a method for identifying dependencies between these parameters. The identification of dependencies in the information support of the yellow phosphorus production system will improve the quality of its functioning in terms of management criteria, energy and resource efficiency. To achieve this goal, the tasks of choosing a mathematical concept for the basis of the method being developed, constructing an algorithm and creating software implementing this method, conducting model experiments were solved. The method is based on the use of deep recurrent neural networks of long-term short-term memory, which have a high generalizing ability and are used in solving problems of regression and classification of multidimensional time sequences, in the form of which, as a rule, the parameters of a chemical and energy technology system are presented. The method is implemented as an application created in the MatLab 2021 environment. The application interface allows you to interactively conduct experiments with various sets of input and output parameters to identify the relationship between them, as well as change the hyperparameters of neural networks. As a result of the application, a repository of trained neural networks is created that simulate the relationships found between the specified parameters of the technological system and can be applied in decision support systems, management and engineering.

Key words

deep recurrent neural networks, detection of hidden dependencies, phosphate raw materials

The author:

Puchkov A.

Degree:

Cand. Sci. (Eng.), Associate Professor, Information Technologies in Economics and Management Department, Branch of the National Research University “MPEI” in Smolensk

Location:

Smolensk, Russia

The author:

Fedotov V.

Degree:

Master’s Student, Electromechanical Systems Department, Branch of the National Research University “MPEI” in Smolensk

Location:

Smolensk, Russia

The author:

Sokolov A. M.

Degree:

Leading Engineer, Scientific Department, Branch of the National Research University “MPEI” in Smolensk

Location:

Smolensk, Russia