8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Материалы в свободном доступе

Авторы: Пучков А. Ю., Дли М. И., Тиндова М. Г.     Опубликовано в № 6(108) 25 декабря 2023 года
Рубрика: Эффективные алгоритмы

Метод решения обратной задачи кинематики на основе обучения с подкреплением при управлении роботами-манипуляторами

Предложен метод решения обратной задачи кинематики для трехзвенного робота-манипулятора на основе одной из разновидностей машинного обучения – обучения с подкреплением. В общем случае эта задача состоит в нахождении законов изменения обобщенных координат захватного устройства манипулятора, обеспечивающих заданные кинематические параметры. При аналитическом решении задачи основой для расчета инверсной кинематики являются параметры Денавита – Хартенберга с дальнейшим выполнением численных матричных вычислений. Однако с учетом кинематической избыточности многозвенных манипуляторов такой подход трудоемкий и не позволяет в автоматизированном режиме учитывать изменения внешней среды в реальном времени, а также особенности области применения робота. Поэтому актуальной исследовательской задачей является разработка решения, в структуре которого присутствует блок самообучения, обеспечивающий решение обратной задачи кинематики в условиях изменяющейся внешней среды, поведение которой заранее неизвестно. В основе предлагаемого метода лежит имитация процесса достижения цели управления роботом (позиционирования захватного устройства манипулятора) в заданной точке пространства методом проб и ошибок. За приближение к цели на каждом шаге обучения вычисляется функция награды, которая используется при управлении роботом. В предложенном методе агентом является рекуррентная искусственная нейронная сеть, а средой, состояние которой наблюдается и оценивается, – робот-манипулятор. Применение рекуррентной нейронной сети позволило учитывать предысторию движения манипулятора и преодолевать сложности, связанные с тем, что в одну и ту же точку рабочей области могут приводить разные сочетания углов между звеньями. Апробирование предложенного метода проводилось на виртуальной модели робота, выполненной с помощью набора инструментов MatLab Robotics System Toolbox и среды Simscape, и оно показало высокую эффективность по критерию «время – точность» предложенного метода решения обратной задачи кинематики.

Ключевые слова

обратная задачи кинематики, роботы-манипуляторы, рекуррентные нейронные сети

Автор статьи:

Пучков А. Ю.

Ученая степень:

канд. техн. наук, доцент, кафедра информационных технологий в экономике и управлении, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

г. Смоленск, Россия

Автор статьи:

Дли М. И.

Ученая степень:

докт. техн. наук, профессор, кафедра информационных технологий в экономике и управлении, филиал Национального исследовательского университета «МЭИ» в г. Смоленске, Смоленск; ведущий научный сотрудник, Университет «Синергия»

Местоположение:

г. Смоленск, Россия

Автор статьи:

Тиндова М. Г.

Ученая степень:

канд. экон. наук, доцент, профессор кафедры бизнес-статистики, Университет «Синергия»

Местоположение:

г. Москва, Россия