8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Материалы в свободном доступе

Анализ влияния архитектуры входных слоев свертки и подвыборки глубокой нейронной сети на качество распознавания изображений

Опубликовано в № 1(85) 19 февраля 2020 года
Рубрика: Модели и методики
Авторы: Дли М. И., Пучков А. Ю., Рысина (Лобанева) Е. И.
компьютерное зрение, оптимизация гиперпараметров, глубокие свёрточные нейронные сети

Автор статьи:

Дли М. И.

Ученая степень:

докт. техн. наук, профессор, кафедра информационных технологий в экономике и управлении, филиал Национального исследовательского университета «МЭИ» в г. Смоленске, Смоленск; ведущий научный сотрудник, Университет «Синергия»

Местоположение:

г. Смоленск, Россия

Автор статьи:

Пучков А. Ю.

Ученая степень:

канд. техн. наук, доцент, кафедра информационных технологий в экономике и управлении, филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

Местоположение:

г. Смоленск, Россия

Автор статьи:

Рысина (Лобанева) Е. И.

Ученая степень:

аспирант, кафедра прикладной математики и искусственного интеллекта, Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет "МЭИ"», Москва, Россия,

Местоположение:

г. Москва, Россия