8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Купить статью

Авторы: Клышников  К. Ю., Барбараш  Л. С., Ганюков  В. И., Данилов  В. В., Овчаренко  Е. А., Онищенко П. С.     Опубликовано в № 3(99) 31 мая 2022 года
Рубрика: Эффективные алгоритмы

Машинное обучение в задаче детекции элементов корня аорты

Существенный рост количества транскатетерных протезирований клапана аорты ведет к развитию вспомогательных систем, решающих задачу интра- или дооперационного ассистирования. Основой подобных систем становится концепция компьютеризированного автоматического анатомического распознавания основных ориентиров, ключевых для процедуры. В случае транскатетерного протезирования – элементов корня аорты и доставочной системы. Настоящая работа посвящена демонстрации потенциала применения методов машинного обучения – современной архитектуры сверточной нейронной сети ResNet V2 для задачи интраоперационного отслеживания реал-тайм основных анатомических ориентиров во время транскатетерного протезирования клапана аорты. Основой для обучения выбранной архитектуры нейросети стали клинические графические данные пяти пациентов, которым осуществляли транскатетерное протезирование клапана аорты коммерческими системами CoreValve (Medtronic Inc., США). Полученные в ходе такого вмешательства интраоперационные аортографии с визуализацией основных анатомических ориентиров: элементов фиброзного кольца клапана аорты, синотубулярного сочленения и элементов доставочной системы, стали входными данными для работы выбранной нейросети. Общее количество изображений составило 2000 шт., которые были случайным образом распределены на две подвыборки: 1400 изображений для обучения, 600 – для валидации. Показано, что использованная архитектура нейронной сети способна осуществлять детекцию с точность 85–96% по метрикам классификационной и локализационной компонент, однако в значительной мере не удовлетворяет требованиям производительности (скорости обработки): время анализа одного кадра аортографии составило 0,097 сек. Полученные результаты определяют дальнейшее направление развития автоматического анатомического распознавания основных ориентиров при транскатетерном протезировании клапана аорты с позиции создания ассистирующей системы – снижение времени анализа каждого кадра за счет описанных в литературе методов оптимизации. Тем не менее предложенный вариант является перспективной высокоточной основой для прикладной реализации подобного программного обеспечения.

Ключевые слова

сверточная нейронная сеть, аортография, транскатетерное протезирование клапана аорты, TAVR, F1-score, локализация

Автор статьи:

Клышников  К. Ю.

Ученая степень:

канд. мед. наук, научный сотрудник, лаборатория новых биоматериалов, Федеральное государственное бюджетное научное учреждение «Научно- исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»

Местоположение:

Кемерово, Россия

Автор статьи:

Барбараш  Л. С.

Ученая степень:

докт. мед. наук, академик РАН, главный научный сотрудник, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»

Местоположение:

Кемерово, Россия

Автор статьи:

Ганюков  В. И.

Ученая степень:

докт. мед. наук, заведующий отделом хирургии сердца и сосудов, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»

Местоположение:

Кемерово, Россия

Автор статьи:

Данилов  В. В.

Ученая степень:

канд. техн. наук, научный сотрудник, Научно- образовательная лаборатория обработки и анализа больших данных, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»

Местоположение:

Томск, Россия

Автор статьи:

Овчаренко  Е. А.

Ученая степень:

канд. техн. наук, заведующий лабораторией новых биоматериалов, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»

Местоположение:

Кемерово, Россия

Автор статьи:

Онищенко П. С.

Ученая степень:

младший научный сотрудник, лаборатория новых биоматериалов, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»

Местоположение:

Кемерово, Россия