8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Авторы

Ильин И. В.

Ученая степень
докт. экон. наук, профессор, директор Высшей школы бизнес-инжиниринга Института промышленного менеджмента, экономики и торговли; заведующий лабораторией «Междисциплинарные исследования и образование по технологическим и экономическим проблемам энергетического перехода (CIRETEC-GT)», Санкт-Петербургский политехнический университет Петра Великого
E-mail
ivi2475@yandex.ru
Местоположение
Санкт-Петербург, Россия
Статьи автора

Применение нейросетевого подхода для обнаружения дефектов текстильных материалов классов «слет» и «затек воды»

Во время четвертой промышленной революции на предприятиях легкой промышленности особую актуальность имеют вопросы автоматизации производственных процессов, в том числе с применением методов компьютерного зрения, машинного обучения и искусственного интеллекта. Ключевую роль в производственных процессах занимают подпроцессы мониторинга и оценки качества производимой продукции (текстильных полотен), на которое напрямую влияет процесс дефектоскопии. Благодаря развитию цифровых технологий и росту вычислительных мощностей появилась возможность автоматизации процесса дефектоскопии текстильных полотен с применением компьютерного зрения с целью снижения затрат на трудовые ресурсы и повышения точности обнаружения дефектов. Цель исследования, рассматриваемого в данной статье, – проведение экспериментов по разметке и обнаружению дефектов текстиля в соответствии с существующей классификацией с применением программно-аппаратного комплекса компьютерного зрения и использованием нейросетевого подхода. Для достижения поставленной цели в работе приводится описание существующей классификации дефектов текстильных полотен, описывается используемый программно-аппаратный комплекс и представляется применение нейросетевой модели архитектуры Mask R-CNN для решения задачи экземплярной сегментации дефектов. В рамках исследования вручную в качестве расширения обучающей выборки проведена разметка более чем 800 фотоснимков тканей по двум классам дефектов: «слет» и «затек воды»; полученные результаты работы нейросетевой модели оценены по метрикам IoU: лучший результат для класса «слет» DIoU = 0,8, для класса «затек воды» DIoU = 0,87. По результатам проведенных экспериментальных исследований сделаны выводы о существующем потенциале использования нейросетевого подхода для дефектоскопии подобных классов дефектов. Представленные результаты являются новыми уникальными примерами обнаружения данных классов дефектов при помощи нейросетевого подхода и могут быть использованы для обучения различных моделей обнаружению объектов на изображении; наработанный опыт может применяться в иных сферах промышленности. Читать дальше...