8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Авторы

Калашников В. А.

Ученая степень
ассистент, департамент анализа данных и машинного обучения, Финансовый университет при Правительстве Российской Федерации
E-mail
vakalashnikov@fa.ru
Местоположение
г. Москва, Россия
Статьи автора

Приложения компьютерного зрения в горнодобывающей промышленности

В последнее десятилетие происходит активная цифровизация промышленного производства на основе бурно развивающихся информационных технологий, в том числе технологий искусственного интеллекта. Во многом это связано с развитием методов глубокого обучения и их применения в компьютерном зрении. С середины 2010-х сверточные нейронные сети демонстрируют исключительную эффективность при решении таких задач, как обнаружение, классификация и сегментация различных объектов. В результате методы компьютерного зрения начинают активно использоваться в задачах контроля качества сырья и готовой продукции. Все это относится к горнодобывающей промышленности. Однако в отечественной научной литературе практически отсутствуют систематические обзоры приложений компьютерного зрения в этой области. Настоящее исследование призвано восполнить этот пробел. В данной работе дается систематический обзор истории развития и современного состояния методов и технологий машинного зрения, применяемых в горнодобывающей промышленности для анализа твердых материалов, демонстрируются последние достижения в этой области и примеры их применения в горном деле. Авторы проанализировали 29 научных работ в области применения компьютерного зрения в горнодобывающей промышленности и классифицировали этапы развития технологий, начиная с середины 1980-х гг., когда компьютерное зрение использовалось без применения машинного обучения, и заканчивая современными исследованиями на основе использования глубоких сверточных нейронных сетей для решения задач классификации и сегментации. Приводится сравнение эффективности применяемых методов, обсуждаются их достоинства и недостатки, даются прогнозы развития методов компьютерного зрения в горнодобывающей промышленности на ближайшее будущее. Приведены примеры, показывающие, что использование сверточных нейронных сетей позволило перейти на качественно более высокий уровень в решении задач классификации и сегментации применительно к анализу объемов выпуска продукции горнодобывающей промышленности, гранулометрического состава, в том числе лещадности, угловатости и шероховатости, содержания пыли и глины, насыпной плотности и пустотности и др. Читать дальше...

Применение глубокого обучения для сегментации камней на конвейерах и складах горнодобывающих предприятий

В последнее десятилетие внедрение методов искусственного интеллекта в промышленность происходит все быстрее. Развитие алгоритмов глубокого обучения и появление возможности хранить и обрабатывать большие объемы информации позволяет быстро и эффективно автоматизировать задачи, которые ранее могли решать только люди – сотрудники предприятий, а полученные результаты не только соответствуют когнитивным способностям человека, но и зачастую их превосходят. Интересным примером рутинной задачи, автоматизация которой возможна методами компьютерного зрения, является задача сегментации камней на конвейерах и складах горнодобывающих предприятий для обеспечения контроля качества сырья и готовой продукции. Цель данной работы – разработка алгоритма сегментации камней на конвейерах и складах. Для достижения этой цели был проведен краткий исторический обзор подходов к решению описанной задачи, а также проведено исследование применения архитектуры Mask R-­CNN к решению задачи сегментации камней. Обучающий набор данных включал 1000 изображений, полученных с помощью аугментации из 100 фотографий щебня, сделанных на конвейере горнодобывающего предприятия. Полученные результаты в метрике IoU превысили 83 %, а в метрике Accuracy – 89 %, что обеспечивает качественный автоматический непрерывный визуальный контроль качества сырья или готовой продукции. Полученные карты сегментации могут служить хорошей базой для определения важных в обрабатывающей промышленности гранулометрических характеристик, категории качества, своевременно обнаруживать лещадность на конвейерах и сегрегацию на складах готовой продукции в реальном времени. Читать дальше...