8 (495) 987 43 74 доб. 3304 Прием заявок на рассмотрение статей E-mail: evlasova@synergy.ru

Мы в соцсетях -              
Рус   |   Eng

Авторы

Корепанова В. С.

Ученая степень
канд. техн. наук, доцент, департамент цифровой экономики, Университет «Синергия»; ведущий инженер ООО «ЛУКОЙЛ-Инжиниринг»
E-mail
vskorepanova5@gmail.com
Местоположение
г. Москва, Россия
Статьи автора

Методика предобработки данных машинного обучения для решения задач компьютерного зрения

В сфере машинного обучения не существует единой методологии предобработки данных, так как все этапы этого процесса являются уникальными, под конкретную задачу. Однако в каждом направлении используется определенный тип данных. В гипотезе исследования предполагается, что можно четко структурировать последовательности и фазы подготовки данных для задач распознавания текстов. В статье рассмотрены основные принципы предобработки данных и выделение последовательных этапов как конкретной методики для задачи распознавания символов азбук. В качестве исходных данных были выбраны изображения набора ETL. Предобработка включала в себя этапы работы с изображениями, на каждом из которых в исходные данные вносились изменения. Первым шагом являлось кадрирование, которое позволило избавиться от лишней информации на изображении. Далее был рассмотрен подход преобразования изображения к исходному соотношению сторон и определен метод преобразования из оттенков серого в черно-белый формат. На следующем этапе были искусственно расширены линии символов для лучшего распознавания печатных азбук. На последнем этапе предобработки данных была произведена аугментация, которая позволила лучше распознавать символы азбук независимо от их положения в пространстве. Как результат, была выстроена общая структура методики предобработки данных для задач распознавания текстов. Читать дальше...

Модификация архитектуры сверточной нейронной сети для определения категории земельного участка со спутниковых снимков

Корректная классификация земельных участков по их типам, например, таким как лесные, сельскохозяйственные, урбанизированные, водные объекты и прочие, относится к актуальным задачам дистанционного зондирования Земли и разработки геоинформационных технологий. Точность и надежность результатов такого категорирования имеют первостепенное значение для эффективного использования природных ресурсов, рационального землепользования и мониторинга состояния окружающей среды. В статье представлен подход к решению задачи категорирования земельных участков по спутниковым снимкам путем применения модифицированной стандартной модели сверточной нейронной сети. Основное внимание уделено модификации архитектуры сети с целью повышения точности классификации земельных участков. Авторами предложен подход к обучению и оптимизации сети с целью решения указанной задачи. Подробно рассматриваются этапы подготовки данных, включая предварительную обработку спутниковых изображений, их аннотирование и создание высококачественных обучающих выборок. Представленные подходы к обучению и оптимизации сети включают использование современных техник регуляризации, методов адаптивного обучения и стратегий балансировки классов, что позволяет эффективно обрабатывать как большие объемы данных, так и более ограниченные наборы специфической информации. Для проверки работоспособности подхода и получения значений показателей качества проведены эксперименты по обучению и тестированию модели на различных наборах данных спутниковых изображений. Результаты эксперимента позволяют считать, что точность категорирования, достигаемая на основе созданной модели, отвечает требованиям Федеральной службы государственной регистрации, кадастра и картографии для исследования отдаленных территорий на предмет пригодности земель для их рационального использования, и предлагаемый метод может применяться для решения практических задач. Читать дальше...