+7 (495) 987 43 74 ext. 3304
Join us -              
Рус   |   Eng

Authors

Fedulov Yaroslav A.

Degree
Cand. Sci. (Eng.), Associate Professor, Computer Engineering Department, Branch of the National Research University "MPEI" in Smolensk
E-mail
fedulov_yar@mail.ru
Location
Smolensk, Russia
Articles

Joint use of OpenMP and MPI technologies on the nodes of the computational cluster

his work is devoted to the problem of implementing an efficient parallel program that solves the asigned task using the maximum available amount of computing cluster resources in order to obtain the corresponding gain in performance with respect to the sequential version of the algorithm. The main objective of the work was to study the possibilities of joint use of the parallelization technologies OpenMP and MPI, considering the characteristics and features of the problems being solved, to increase the performance of executing parallel algorithms and programs on a computing cluster. This article provides a brief overview of approaches to calculating the sequential programs complexity functions. To determine the parallel programs complexity, an approach based on operational analysis was used. The features of the sequential programs parallelization technologies OpenMP and MPI are described. The main software and hardware factors affecting the execution speed of parallel programs on the nodes of a computing cluster are presented. The main attention in this paper is paid to the study of the impact on performance of computational and exchange operations number ratio in programs. To implement the research, parallel OpenMP and MPI testing programs were developed, in which the total number of operations and the correlation between computational and exchange operations are set. A computing cluster consisting of several nodes was used as a hardware and software platform. Experimental studies have made it possible to confirm the effectiveness of the hybrid model of a parallel program in multi-node systems with heterogeneous memory using OpenMP in shared memory subsystems, and MPI in a distributed memory subsystems. Read more...

Hybrid intelligent machine learning system for modeling phosphate ore processing processes

The results of a study are presented, the purpose of which was to create an intelligent machine learning system for modeling the processes of charge agglomeration during processing of phosphate ore raw materials. The relevance of the study is justified by the need to improve the information support of technological systems management processes in the context of the digital transformation of the production environment, carried out within the framework of the Fourth Industrial Revolution and characterized by the massive introduction of the industrial Internet of things, which leads to an avalanche-like increase in the volume of technological data. Their processing using modern analysis methods, including artificial intelligence methods, can improve the quality of decisions made and provide competitive advantages. The scientific novelty of the research results is the structure of the proposed hybrid intelligent machine learning system for modeling phosphate ore processing processes, which is based on the joint use of a dynamic model of the sintering process in the Simulink environment and a deep neural network. The architecture of the neural network was developed taking into account the specifics of the mathematical description of the agglomeration process and includes input fully connected layers that receive measurement results of process variables, as well as a recurrent layer that processes the combined sequence from the outputs of fully connected layers. The integration of a Simulink model and a deep neural network makes it possible to quickly adapt an intelligent system to a specific sintering machine through the use of a two-stage machine learning procedure – first on a Simulink simulation model, and then on a real object. Taking into account the significant inertia of the processes accompanying agglomeration, this approach ensures prompt changes in the settings of the hybrid intelligent machine learning system for the new composition of raw materials and technological parameters. A program has been developed that provides a convenient graphical interface for preparing and using an intelligent system, and simulation experiments have shown that the process of additional training for new technological parameters is much faster than initial training while maintaining high accuracy of the obtained modeling results. Read more...